Convergence and completeness for square-well Stark resonant state expansions
نویسندگان
چکیده
منابع مشابه
Analytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory
Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...
متن کاملAsymmetric filter convergence and completeness
Completeness for metric spaces is traditionally presented in terms of convergence of Cauchy sequences, and for uniform spaces in terms of Cauchy filters. Somewhat more abstractly, a uniform space is complete if and only if it is closed in every uniform space in which it is embedded, and so isomorphic to any space in which it is densely embedded. This is the approach to completeness used in the ...
متن کاملOn strong standard completeness of MTLQ∗ expansions
Within the mathematical logic field, much effort has been devoted to prove completeness of different axiomatizations with respect to classes of algebras defined on the real unit interval [0, 1] (see for instance [1] and [2]), but in general, what has been mainly achieved are axiomatizations and results concerning fini-tary completeness, that is, for deductions from a finite number of premises. ...
متن کاملMean square convergence analysis for kernel least mean square algorithm
In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...
متن کاملTHE RADIUS OF CONVERGENCE AND THE WELL-POSEDNESS OF THE PAINLEVÉ EXPANSIONS OF THE KORTEWEG-DE-VRIES EQUATION Short Title: Well Posedness of Painlevé expansions
In this paper we obtain explicit lower bounds for the radius of convergence of the Painlevé expansions of the Korteweg-de-Vries equation around a movable singularity manifold S in terms of the sup norms of the arbitrary functions involved. We use this estimate to prove the well-posedness of the singular Cauchy problem on S in the form of continuous dependence of the meromorphic solution on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2018
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.5042523